Introduction to Krylov Subspace Methods in Model Order Reduction
نویسندگان
چکیده
In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using the bases of some subspaces called input and output Krylov subspaces. The aim of this paper is to give an introduction into the principles of Krylov subspace based model reduction and to give a rough overview of the algorithms available for computation. A technical example illustrates the procedures.
منابع مشابه
Krylov Subspace Methods in Linear Model Order Reduction: Introduction and Invariance Properties
In recent years, Krylov subspace methods have become popular tools for computing reduced order models of high order linear time invariant systems. The reduction can be done by applying a projection from high order to lower order space using bases of some subspaces called input and output Krylov subspaces. One aim of this paper is describing the invariancies of reduced order models using these m...
متن کاملCombining Krylov subspace methods and identification-based methods for model order reduction
Many different techniques to reduce the dimensions of a model have been proposed in the near past. Krylov subspace methods are relatively cheap, but generate non-optimal models. In this paper a combination of Krylov subspace methods and Orthonormal Vector Fitting is proposed. In that way an optimal model for a large model can be generated. In the first step, a Krylov subspace method reduces the...
متن کاملMoment Matching Theorems for Dimension Reduction of Higher-Order Dynamical Systems via Higher-Order Krylov Subspaces
Moment matching theorems for Krylov subspace based model reduction of higherorder linear dynamical systems are presented in the context of higher-order Krylov subspaces. We introduce the definition of a nth-order Krylov subspace Kn k ({Ai} n i=1;u) based on a sequence of n square matrices {Ai}i=1 and vector u. This subspace is a generalization of Krylov subspaces for higher-order systems, incor...
متن کاملKrylov subspace methods for model order reduction of bilinear control systems
We discuss the use of Krylov subspace methods with regard to the problem of model order reduction. The focus lies on bilinear control systems, a special class of nonlinear systems, which are closely related to linear systems. While most existent approaches are based on series expansions around zero, we will extend the underlying ideas to a more general context and show that there exist several ...
متن کاملStructure-preserving Model Reduction Using a Krylov Subspace Projection Formulation∗
A general framework for structure-preserving model reduction by Krylov subspace projection methods is developed. It not only matches as many moments as possible but also preserves substructures of importance in the coefficient matrices L,G,C, and B that define a dynamical system prescribed by the transfer function of the form H(s)=L∗(G+sC)−1B. Many existing structurepreserving model-order reduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004